3.11.6 \(\int \frac {1}{(d+e x)^3 (c d^2+2 c d e x+c e^2 x^2)} \, dx\) [1006]

Optimal. Leaf size=17 \[ -\frac {1}{4 c e (d+e x)^4} \]

[Out]

-1/4/c/e/(e*x+d)^4

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {27, 12, 32} \begin {gather*} -\frac {1}{4 c e (d+e x)^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)^3*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)),x]

[Out]

-1/4*1/(c*e*(d + e*x)^4)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin {align*} \int \frac {1}{(d+e x)^3 \left (c d^2+2 c d e x+c e^2 x^2\right )} \, dx &=\int \frac {1}{c (d+e x)^5} \, dx\\ &=\frac {\int \frac {1}{(d+e x)^5} \, dx}{c}\\ &=-\frac {1}{4 c e (d+e x)^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.00, size = 17, normalized size = 1.00 \begin {gather*} -\frac {1}{4 c e (d+e x)^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)^3*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)),x]

[Out]

-1/4*1/(c*e*(d + e*x)^4)

________________________________________________________________________________________

Maple [A]
time = 0.59, size = 16, normalized size = 0.94

method result size
default \(-\frac {1}{4 c e \left (e x +d \right )^{4}}\) \(16\)
norman \(-\frac {1}{4 c e \left (e x +d \right )^{4}}\) \(16\)
gosper \(-\frac {1}{4 \left (e x +d \right )^{2} e c \left (e^{2} x^{2}+2 d x e +d^{2}\right )}\) \(34\)
risch \(-\frac {1}{4 \left (e x +d \right )^{2} e c \left (e^{2} x^{2}+2 d x e +d^{2}\right )}\) \(34\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^3/(c*e^2*x^2+2*c*d*e*x+c*d^2),x,method=_RETURNVERBOSE)

[Out]

-1/4/c/e/(e*x+d)^4

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 48 vs. \(2 (15) = 30\).
time = 0.28, size = 48, normalized size = 2.82 \begin {gather*} -\frac {1}{4 \, {\left (c x^{4} e^{5} + 4 \, c d x^{3} e^{4} + 6 \, c d^{2} x^{2} e^{3} + 4 \, c d^{3} x e^{2} + c d^{4} e\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^3/(c*e^2*x^2+2*c*d*e*x+c*d^2),x, algorithm="maxima")

[Out]

-1/4/(c*x^4*e^5 + 4*c*d*x^3*e^4 + 6*c*d^2*x^2*e^3 + 4*c*d^3*x*e^2 + c*d^4*e)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 48 vs. \(2 (15) = 30\).
time = 5.35, size = 48, normalized size = 2.82 \begin {gather*} -\frac {1}{4 \, {\left (c x^{4} e^{5} + 4 \, c d x^{3} e^{4} + 6 \, c d^{2} x^{2} e^{3} + 4 \, c d^{3} x e^{2} + c d^{4} e\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^3/(c*e^2*x^2+2*c*d*e*x+c*d^2),x, algorithm="fricas")

[Out]

-1/4/(c*x^4*e^5 + 4*c*d*x^3*e^4 + 6*c*d^2*x^2*e^3 + 4*c*d^3*x*e^2 + c*d^4*e)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 58 vs. \(2 (14) = 28\).
time = 0.14, size = 58, normalized size = 3.41 \begin {gather*} - \frac {1}{4 c d^{4} e + 16 c d^{3} e^{2} x + 24 c d^{2} e^{3} x^{2} + 16 c d e^{4} x^{3} + 4 c e^{5} x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**3/(c*e**2*x**2+2*c*d*e*x+c*d**2),x)

[Out]

-1/(4*c*d**4*e + 16*c*d**3*e**2*x + 24*c*d**2*e**3*x**2 + 16*c*d*e**4*x**3 + 4*c*e**5*x**4)

________________________________________________________________________________________

Giac [A]
time = 0.76, size = 15, normalized size = 0.88 \begin {gather*} -\frac {e^{\left (-1\right )}}{4 \, {\left (x e + d\right )}^{4} c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^3/(c*e^2*x^2+2*c*d*e*x+c*d^2),x, algorithm="giac")

[Out]

-1/4*e^(-1)/((x*e + d)^4*c)

________________________________________________________________________________________

Mupad [B]
time = 0.41, size = 53, normalized size = 3.12 \begin {gather*} -\frac {1}{4\,c\,d^4\,e+16\,c\,d^3\,e^2\,x+24\,c\,d^2\,e^3\,x^2+16\,c\,d\,e^4\,x^3+4\,c\,e^5\,x^4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d + e*x)^3*(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)),x)

[Out]

-1/(4*c*e^5*x^4 + 4*c*d^4*e + 24*c*d^2*e^3*x^2 + 16*c*d^3*e^2*x + 16*c*d*e^4*x^3)

________________________________________________________________________________________